Convergence of nonconforming multigrid methods without full elliptic regularity

نویسنده

  • Susanne C. Brenner
چکیده

We consider nonconforming multigrid methods for symmetric positive definite second and fourth order elliptic boundary value problems which do not have full elliptic regularity. We prove that there is a bound (< 1) for the contraction number of the W -cycle algorithm which is independent of mesh level, provided that the number of smoothing steps is sufficiently large. We also show that the symmetric variable V -cycle algorithm is an optimal preconditioner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Multilevel Methods for Adaptive Nonconforming Finite Element Methods

In this paper, we propose a local multilevel product algorithm and its additive version for linear systems arising from adaptive nonconforming finite element approximations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jacobi or Gauss-Seidel smoothers performed on local nodes on coarse meshes and global nodes on t...

متن کامل

Convergence of the multigrid V-cycle algorithm for second-order boundary value problems without full elliptic regularity

The multigrid V -cycle algorithm using the Richardson relaxation scheme as the smoother is studied in this paper. For second-order elliptic boundary value problems, the contraction number of the V -cycle algorithm is shown to improve uniformly with the increase of the number of smoothing steps, without assuming full elliptic regularity. As a consequence, the V -cycle convergence result of Braes...

متن کامل

Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second order elliptic boundary value problems

The convergence of V -cycle and F -cycle multigrid algorithms with a sufficiently large number of smoothing steps is established for nonconforming finite element methods for second order elliptic boundary value problems.

متن کامل

The Analysis of Multigrid Algorithms for Nonconforming and Mixed Methods for Second Order Elliptic Problems

In this paper we consider multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements. We prove optimal convergence properties of the W-cycle multigrid algorithm and uniform condition number estimates for the variable V-cycle preconditioner. Lower order terms are treated, so our results also apply to parabo...

متن کامل

Recent Development of Multigrid Algorithms for Mixed and Nonconforming Methods for Second Order Elliptic Problems

Multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements are considered. The construction of several coarse-tone intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed nite element methods with and without projection of the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999